Multi-Amalgamation in Adhesive Categories
نویسندگان
چکیده
Amalgamation is a well-known concept for graph transformations in order to model synchronized parallelism of rules with shared subrules and corresponding transformations. This concept is especially important for an adequate formalization of the operational semantics of statecharts and other visual modeling languages, where typed attributed graphs are used for multiple rules with general application conditions. However, the theory of amalgamation for the double pushout approach has been developed up to now only on a set-theoretical basis for pairs of standard graph rules without any application conditions. For this reason, we present the theory of amalgamation in this paper in the framework of adhesive categories for a bundle of rules with (nested) application conditions. In fact, it is also valid for weak adhesive HLR categories. The main result is the Multi-Amalgamation Theorem, which generalizes the well-known Parallelism and Amalgamation Theorems to the case of multiple synchronized parallelism. The constructions are illustrated by a small running example. A more complex case study for the operational semantics of statecharts based on multi-amalgamation is presented in a separate paper.
منابع مشابه
Satisfaction, Restriction and Amalgamation of Constraints in the Framework of M-Adhesive Categories
Application conditions for rules and constraints for graphs are well-known in the theory of graph transformation and have been extended already toM-adhesive transformation systems. According to the literature we distinguish between two kinds of satisfaction for constraints, called general and initial satisfaction of constraints, where initial satisfaction is defined for constraints over an init...
متن کاملThe Strong Amalgamation Property and (effective) Codescent Morphisms
Codescent morphisms are described in regular categories which satisfy the so-called strong amalgamation property. Among varieties of universal algebras possessing this property are, as is known, categories of groups, not necessarily associative rings, M -sets (for a monoid M), Lie algebras (over a field), quasi-groups, commutative quasi-groups, Steiner quasi-groups, medial quasigroups, semilatt...
متن کاملStrong amalgamation, Beck-Chevalley for equivalence relations and interpolation in algebraic logic
We extend Makkai’s proof of strong amalgamation (push-outs of monos along arbitrary maps are monos) from the category of Heyting algebras to a class which includes the categories of symmetric bounded distributive lattices, symmetric Heyting algebras, Heyting modal S4-algebras, Heyting modal bi-S4-albegras, and Lukasiewicz n-valued algebras. We also extend and improve Pitt’s proof that strong am...
متن کاملAdhesive Categories
We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well-behaved. Many types of graphical structures used in computer science are shown to be examples of adhesive categories. Double-pushout graph rewriting generalises well to rewriting on arbitrary adhesive categories.
متن کامل